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Abstract

In the framework of C∗-algebraic deformation quantization we propose a notion of a deformation groupoid which could apply
to known examples such as Connes’s tangent groupoid of a manifold, its generalization by Landsman and Ramazan, Rieffel’s
noncommutative torus, and even Landi’s noncommutative 4-sphere. We construct such a groupoid for a wide class of Tn-spaces,
that generalizes the one given for Cn by Bellissard and Vittot. In particular, using the geometric properties of the moment map
discovered in the 1980’s by Atiyah, Delzant, Guillemin and Sternberg, it provides a C∗-algebraic deformation quantization for all
toric manifolds, including the 2-sphere and all complex projective spaces.
c© 2006 Elsevier B.V. All rights reserved.

0. Introduction

Quantization is going from classical mechanics to quantum mechanics. In the classical Hamiltonian picture, a
physical system is described by its phase space, a Poisson manifold M , with Poisson bivector denoted by Ω , and an
associated Poisson bracket of two observables f, f′

∈ C∞(M):

{f, f′
}Ω

de f
=
〈
df ⊗ df′

| Ω
〉
.

On the other hand, a quantum system is described, from Heisenberg’s point of view, by replacing the classical algebra
C∞(M) of observables by an algebra of operators on a Hilbert space. Moreover the Poisson bracket {f, f′

}Ω has to
be replaced by 1

ı h̄ [ f, f ′
], where f and f ′ are the quantum analogs of f and f′, [ f, f ′

] is their commutator, and h̄ is
Planck’s physical constant. Dirac postulated in the 1930’s that the correspondence from renormalized commutators to
Poisson bracket is given by a limit process when Planck’s constant goes to zero.

In the 1970’s the notion of deformation quantization was introduced in [3] as an attempt to give a precise definition
to Dirac’s principle. One of the ideas was to use a field of algebras (Ah̄) parametrized by a real number h̄, such that, for
h̄ = 0, the algebra A0 is the commutative algebra of classical observables, and for h̄ 6= 0, Ah̄ is the noncommutative
algebra of quantum observables. In the early 1990’s Rieffel proposed in [21,22] a topological definition of the limit
process making use of the previously known notion of the continuous field of C∗-algebras [10]. The following is a
slight generalization of Rieffel’s own, but adapted to groupoid C∗-algebras.

E-mail address: cadet@math.jussieu.fr.

0393-0440/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2006.05.005

http://www.elsevier.com/locate/jgp
mailto:cadet@math.jussieu.fr
http://dx.doi.org/10.1016/j.geomphys.2006.05.005


642 F. Cadet / Journal of Geometry and Physics 57 (2007) 641–656

Definition 0.1. Let (Ah̄)h̄∈X be a continuous field of C∗-algebras parametrized by a locally compact subset X of R
containing 0 as a limit point; we denote by A =

⋃
h̄∈X Ah̄ the associated topological bundle over X . Let Q be a

sub-*-algebra of the C∗-algebra C0(X,A) of continuous sections of A. We say that ((Ah̄)h̄∈X ,Q) is a deformation
if:

• The space Q0 = { f0 ∈ A0 | f ∈ Q} is dense in A0.
• There is a map Q0 ×Q0 - Q0, denoted by

(a, b) - {a, b}0,

such that, for every f, f ′
∈ Q, the bracket { f0, f ′

0}0 is the continuous extension at zero of the continuous section
h̄ - 1

ı h̄ [ fh̄, f ′

h̄] defined on X − {0} i.e.:

{ f0, f ′

0}0 = lim
h̄→0
h̄ 6=0

1
ı h̄

[ fh̄, f ′

h̄].

Thus,A0 is a commutative C∗-algebra andQ0 is a sub-*-algebra, and, moreover,Q0 has a structure of Poisson algebra
for the bracket {., .}0.

Definition 0.2. Let (M,Ω) be a Poisson manifold. We denote as C0(M) (resp. C∞

0 (M)) the algebra of functions on
M vanishing at infinity (resp. the algebra of smooth functions on M vanishing at infinity). A deformation of M is a
deformation ((Ah̄)h̄∈X ,Q) endowed with an isomorphism of C∗-algebras:

C0(M)
I- A0,

such that:

• Q0 ⊂ I(C∞

0 (M));

• for each f, f ′
∈ Q, { f0, f ′

0}0 = I
(
{I−1 f0, I−1 f ′

0}Ω
)
.

Then, each linear *-preserving section T of the canonical projection of Q onto Q0 gives rise to a quantization:

Q0
quantization- Qh̄

-T
��

--

Q
Many usual C∗-algebras can be described as the C∗-algebra C∗(G) of a groupoid G, using the construction given

by Jean Renault in [18] that generalizes the construction of the (full and reduced) C∗-algebra(s) of a group or of a
group action. Note that a bundle of groupoids is also a groupoid. On the topological level Ramazan [17,14] established
the following property:

Theorem 0.3. Let (G h̄)h̄∈X be a field of groupoids, and G =
⋃

h̄∈X G h̄ be the corresponding bundle, which we
assume to be locally compact, Hausdorff, separable, endowed with a continuous Haar system, amenable (cf. [1]),

and such that the bundle map G
p-- X is open. Then, the field

(
C∗(G h̄)

)
h̄∈X possesses a continuous field structure

such that the algebra of continuous sections is

C0

(
X,
⋃
h̄∈X

C∗(G h̄)

)
= C∗(G).

Definition 0.4. Let G be a locally compact, Hausdorff, separable bundle of groupoids over a locally compact subset

X of R, endowed with a continuous Haar system, amenable, and such that the bundle map G
p-- X is open. We say

that G is a deformation groupoid if there exists a sub-*-algebra Q of the algebra of continuous sections of the field
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C∗(G h̄)

)
h̄∈X such that

((
C∗(G h̄)

)
h̄∈X ,Q

)
is a deformation. We say that G is a deformation groupoid of a Poisson

manifold M if there exists such Q and an isomorphism I such that
((

C∗(G h̄)
)

h̄∈X ,Q, I
)

is a deformation of M .

If G is as in Definition 0.4, then G is a deformation groupoid of (M,Ω) if and only if:

1. There exists an isomorphism C0(M)
I
∼

- C∗(G0).

2. There exists a sub-*-algebra Q of C∗(G) such that:
(a) Q0 is dense in C∗(G0),
(b) I−1(Q0) ⊂ C∞

0 (M),

(c) ∀ f, f ′
∈ Q, lim h̄→0

h̄ 6=0

1
ı h̄ [ fh̄, f ′

h̄] = I
(
{I−1 f0, I−1 f ′

0}Ω
)
.

We will need the following result:

Proposition 0.5. Let M be a manifold, without a priori Poisson structure. Suppose there exists G as in Definition 0.4
such that G satisfies the conditions 1, 2(a), 2(b) above, and the following condition:

2(c’) for every f, f ′
∈ Q the section h̄ - 1

ı h̄ [ fh̄, f ′

h̄] has a unique continuous extension at h̄ = 0 in Q0, which
only depends on the values f0 and f ′

0.

Then, M admits a Poisson bracket such that G is a deformation groupoid of M.

The first example of a deformation groupoid was given by Connes in [8] (see also [23]): the tangent groupoid of a
manifold N is a deformation groupoid of the cotangent bundle T ∗N endowed with its canonical symplectic structure.
This was generalized by Landsman and Ramazan [14,17,13] to integrable Lie–Poisson manifolds (i.e. manifolds
which are the dual of an integrable Lie algebroid, endowed with the canonical Poisson structure described in [11]).
In 1990 Bellissard and Vittot [5] constructed a deformation groupoid of Cn with its canonical symplectic structure
which was not a Lie groupoid. In the present paper, we generalize this construction to other Tn-spaces M (where Tn

denotes the n-dimensional torus). The construction applies to the 2-sphere and, using Delzant’s results [9], to all toric
manifolds, including all complex projective spaces endowed with their canonical Kähler structure.

The strategy is based on two remarks. First, the existence of an isomorphism C0(M)
I
∼

- C∗(G0) (condition 1

above) implies by [19, lemme 1.3 p. 7] that the “classical” groupoid G0 must be a bundle of commutative groups.1

Then, we note that the Fourier–Gelfand transform C(Tn) ' C∗(Zn) gives such an isomorphism when M = Tn and
G = Zn .

The paper is organized as follows:

Section 1 Given a Tn-space M , we construct an isomorphism C(M) ' C∗(G0) for a suitable bundle of commutative
groups G0, under the assumption that the projection M -- M/Tn has a continuous section
(Theorem 1.3).

Section 2 Using a second action on M/Tn , we then construct a deformation groupoid bundle G over R such that the
fiber at 0 of G is G0. The sub-*-algebra Q considered consists of restrictions of C∞

c functions on a Lie
groupoid G̃ containing G as subgroupoid (Theorem 2.2).

Section 3 We compute the Poisson structure corresponding to this deformation structure on M (Theorem 3.2).
Section 4 We check that this construction can be applied to toric manifolds, and that the Poisson structure so obtained

is the original symplectic structure of the toric manifold (Theorem 4.2).

Another application of this construction is to give a groupoid description of Rieffel’s multidimensional
noncommutative tori [20] and of Connes and Landi’s noncommutative 4-sphere [7]. The details of these examples
can be found in [6, pages 64–68].

1 Note that a bundle of commutative groups is always amenable. Replacing globally continuous fields of C∗-algebras by fields only continuous
at zero, one could construct nonglobally amenable deformation groupoids.
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1. Fourier–Gelfand isomorphisms for a Tn-space

For G a groupoid, we denote by G(0) its unit space, and by G
r-

s
- G(0) its range and source maps. The following

definition appears in [18]:

Definition 1.1. A locally compact, Hausdorff, separable groupoid G is étale when the sets:

G y
= {g ∈ G | r(g) = y}, y ∈ G(0) (fibers of the range map)

are discrete, and the counting measure is a continuous Haar system.

Étale groupoids have the following well-known properties:

• An open subgroupoid of an étale groupoid is itself étale.
• The maps r, s are open [18]. And the converse is true if G is a bundle of commutative groups: such a topological

bundle is étale if and only if the projection G
r=s- G(0) is open (cf. [19]).

Let M be a Hausdorff, locally compact, separable space endowed with an action α of Tn denoted by (s, x) ∈

Tn
× M - αs(x) ∈ M. Let us introduce some notation:

• ∆ = M/Tn denotes the quotient space, which is Hausdorff, separable and locally compact, and let M
J-- ∆ be

the canonical projection;
• for y ∈ ∆, Tn

y is the common isotropy subgroup of all points x ∈ M such that J (x) = y, i.e. Tn
y = {s ∈ Tn

|

αs(x) = x};
• Tn/Tn

y is the quotient group and T̂n/Tn
y is its Pontryagin dual. Since Tn

y is closed in Tn , the dual map of
Tn -- Tn/Tn

y is injective:

T̂n/Tn
y

⊂ - T̂n = Zn
;

• for k = (k1, . . . , kn) ∈ Zn and s = (s1, . . . , sn) ∈ Tn , we denote the duality bracket

〈k, s〉 = sk1
1 · · · skn

n ;

• for k ∈ Zn , we let ∆(k) = {y ∈ ∆ | ∀s ∈ Tn
y, 〈k, s〉 = 1}; then, k ∈ T̂n/Tn

y if and only if y ∈ ∆(k), and we also
let ∆(∞) = {y ∈ ∆ | Tn

y = {1}}.

Finally we construct a bundle of commutative groups G0 by setting

G0 =

⋃
y∈∆

T̂n/Tn
y =

⋃
k∈Zn

∆(k) × {k} ⊂ ∆ × Zn,

equipped with the topology induced by ∆ × Zn .

Proposition 1.2. If there exists a continuous section σ of J : M �σ

J
-- ∆, then G0 -- ∆ is an étale bundle of

commutative groups.

Proof. Since the trivial bundle of groups ∆ × Zn is clearly étale, it suffices to prove that G0 is open. So it suffices to
prove that the ∆(k) are open in ∆, i.e. that their complements ∆(k)c are closed in ∆.

First we give a characterization of elements in ∆(k)c. For each y ∈ ∆, define a subgroup Hy of T by
Hy = {〈k, s〉 | s ∈ Tn

y}. We have

y ∈ ∆(k)c
⇔ k 6∈ T̂n/Tn

y ⇔ Hy 6= {1}.

Moreover if H is a subgroup of T, we have

(∀t ∈ H, |t − 1| <
√

2) ⇔ H = {1},

which is a particular case of the fact that Lie groups do not have small nontrivial subgroups [16]. Thus,

y ∈ ∆(k)c
⇔ (∃s ∈ Tn

y, |〈k, s〉 − 1| ≥
√

2).
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Let us now prove that for any convergent sequence (yi )i in ∆(k)c, the limit y is also in ∆(k)c. Since yi ∈ ∆(k)c,
for each i there exists a si ∈ Tn

yi
such that |〈k, si 〉 − 1| ≥

√
2. Let (si j ) j be a subsequence of (si )i in Tn converging to

some s. Then, |〈k, s〉 − 1| ≥
√

2. Moreover, since si ∈ Tn
yi

, we have αsi j
(σ (yi j )) = σ(yi j ), for every j . In the limit,

we get αs(σ (y)) = σ(y), and hence s ∈ Tn
y . Thus, we have proved

∃s ∈ Tn
y, | 〈k, s〉 − 1| ≥

√
2,

which means that ∆(k)c is closed in ∆. �

As a corollary, we note that the bundle map G0
p- ∆ is open.

Such continuous sections σ may not exist; in the sequel we suppose that they do, and we introduce more notations
which depend implicitly on the choice of σ .

• We define the map ∆ × Tn ρ- M by ρ(y, s) = αs(σ (y)).
• The “dual” bundle of G0 is

Ĝ0 =

⋃
y∈∆

Tn/Tn
y,

endowed with the finest topology such that the canonical projection ∆ × Tn π̂-- Ĝ0 is continuous.
• Since ρ(y, s) = ρ(y′, s′) holds if and only if y = y′ and s = s′ mod Tn

y , there is a quotient map ρ which is
one-to-one and onto and that makes the following diagram commutative.

Ĝ0
ρ - M

-

ρ

∆ × Tn

π̂

6

σ × idTn

- M × Tn

α

6

• For every k ∈ Zn
∪ {∞}, we let Mk be the following subset of M :

Mk = ρ(∆(k) × Tn) = J−1(∆(k)) = {αs (σ (y)) | s ∈ Tn, y ∈ ∆(k)}.

In particular, note that M∞ = J−1(∆(∞)) is the maximal stable subset of M on which the action of Tn is free.
• For every k ∈ Zn , we define a function kσ that makes the following diagram commutative:

Mk

∆(k) × Tn

--
ρ

k -
-kσ

T (i.e. kσ (ρ(y, s)) = 〈k, s〉)

The main result of this section is the following.

Theorem 1.3. For any continuous section σ of J and any k ∈ Zn , the set Mk is open in M, and the function kσ is

continuous. Moreover there is an isomorphism of C∗-algebras C0(M)
I
∼

- C∗(G0), such that, for any f ∈ Cc(G0)

and any x ∈ M,

(I−1 f )(x) =

∑
k∈T̂n/Tn

y

f (J (x), k)kσ (x), where y = J (x).

We decompose the proof into several lemmas.

Lemma 1.4. The map ρ is a homeomorphism.

Proof. Since the group Tn is compact, its action α on M is a proper map, and σ is proper too, since, for every compact
subset K of M , the set σ−1(K ) = J (K ) is compact. Thus, ρ ◦ π̂ = α ◦ (σ × idTn ) is a closed and continuous map.
Hence, ρ itself is closed, since π̂ is continuous and surjective. Since ρ is continuous, by the choice of topology of Ĝ0,
ρ is a homeomorphism. �
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We obtain, as immediate corollaries of this lemma, that:

• the bundle map Ĝ0
p̂=J◦ρ-- ∆ is continuous and proper;

• the bundle duality bracket Ĝ0 ∗
∆

G0 - T is continuous, where Ĝ0 ∗
∆

G0 denotes the fibered product.

For any function f ∈ Cc(G0), let us define its Fourier transform as the function

Ĝ0
F f
→ C

(y, s mod Tn
y) 7→

∑
k∈T̂n/Tn

y

f (y, k) 〈k, s〉.

Then, for any y ∈ ∆, we have (F f )y = (Fy)( fy), where fy denotes the restriction of f to T̂n/Tn
y and

C∗

(
T̂n/Tn

y

) Fy- C
(
Tn/Tn

y

)
is the classical Fourier–Gelfand transform for commutative groups.

Lemma 1.5. The Fourier transform induces an isomorphism of C∗-algebras

C∗(G0)
F- C0(Ĝ0).

Proof. Since Ĝ0 is homeomorphic to M , the space Ĝ0 × G0 is normal, and Ĝ0 ∗
∆

G0 is a closed subset. For any fixed

f ∈ Cc(G0), the continuous map (y, s, k) - f (y, k)〈k, s〉 defined on Ĝ0 ∗
∆

G0 admits a continuous extension K

on Ĝ0 × G0 (by Uhrysohn’s Theorem). Then, using [4, chap X, Section 3, no. 4, th. 3] and the fact that G0 is étale,
and hence the counting measure is a continuous Haar system, we obtain the continuity of F f , since

(F f )(y, s mod Tn
y) =

∑
k∈T̂n/Tn

y

K ((y, s), (y, k)).

Moreover, the inequality∣∣∣F f (y, s mod Tn
y)

∣∣∣ ≤

∑
k∈T̂n/Tn

y

| f (y, k)| ,

implies that the support of F f is contained in the set p̂−1(p(Supp f )) which is compact, since p̂ is proper.
We consider Cc(G0) as a dense sub-*-algebra of C∗(G0), and Cc(Ĝ0) as a sub-*-algebra of C0(Ĝ0), also dense

for the sup norm. An easy calculation shows that the map Cc(G0)
F- Cc(Ĝ0) is a morphism of commutative

*-algebras.

Let us prove now that F is isometric. Since the bundle map G0
p- ∆ is open, we get a continuous field of

C∗-algebras
(

C∗(T̂n/Tn
y)
)

y∈∆
, whose C∗-algebra of continuous sections is C∗(G0); then, for every f ∈ Cc(G0), we

get

‖ f ‖C∗(G0) = sup
y∈∆

‖ fy‖C∗(T̂n/Tn
y)

.

Since the Fourier transform Fy is isometric for any y ∈ ∆, we get

‖ fy‖C∗(T̂n/Tn
y)

= ‖Fy( fy)‖C
(
Tn/Tn

y

).
Hence,

‖ f ‖C∗(G0) = sup
y∈∆

‖Fy( fy)‖C
(
Tn/Tn

y

) = ‖F f ‖C0(Ĝ0)
.
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Hence, by completion, F has an isometric extension C∗(G0)
F- C0(Ĝ0). Moreover this extension is surjective,

and, since F(C∗(G0)) is a closed and dense sub-*-algebra, the extension is an isomorphism by the Stone–Weierstrass
Theorem.2 �

Now we give the proof of the Theorem 1.3.

Proof. The sets Mk = J−1(∆(k)) are open since J is continuous and the ∆(k) are open. Moreover since, for all
s ∈ Tn and y ∈ ∆(k),

kσ (ρ(y, s)) = 〈k, s〉,

we have kσ = k ◦ ρ−1, and hence kσ is continuous.
The isomorphism I is defined as the map that makes the following diagram commute.

C0(M)
I- C∗(G0)

-ρ∗

�

F
(

i.e. I−1 f = (F f ) ◦ ρ−1
)

C0(Ĝ0)

�

2. Deformation groupoid of a Tn-space

Assume that the Tn-space M is in fact a manifold, and that the quotient space ∆ is a locally closed subset of a
Hausdorff manifold N endowed with a smooth action β of Rn :

M
	α

J - ∆ ⊂ N
	β

.

Then, one can construct a deformation groupoid of M (for some Poisson structure) in the following way: for such a
given action β, there is a right action of Zn on R × N defined for every h̄ ∈ R, y ∈ N and k ∈ Zn by

(h̄, y) · k = (h̄, βh̄k(y)).

Let us denote by

G̃ = (R × N ) o Zn

the cross-product groupoid (cf. [18]); then, G̃ is an étale Lie bundle of groupoids parametrized by h̄ ∈ R. We let

G = {(h̄, y, k) ∈ R × N × Zn
| y, βh̄k(y) ∈ ∆(k) and Tn

y = Tn
βh̄k (y)},

where the terms ∆(k) and Tn
y are defined in the previous section. Then, the fiber {(h̄, y, k) ∈ G | h̄ = 0} is exactly

the groupoid G0 defined in the previous section.

Proposition 2.1. Let M be a Hausdorff separable manifold with an action of Tn such that the quotient space ∆ is a
locally closed subset of a Hausdorff manifold N, which is endowed with a smooth action β of Rn . Then, the groupoid
G previously defined is a subgroupoid of G̃, with space of units G(0)

= R × ∆.
Moreover, setting Gk = G ∩ (R × N × {k}), the groupoid G is étale if and only if, for all k ∈ Zn , the sets

s(Gk) = {(h̄, y) | y, βh̄k(y) ∈ ∆(k) and Tn
y = Tn

βh̄k (y)}

are open in R × ∆; then, G is amenable and the projection G -- R is open.

2 Because, for every distinct (y, s mod Tn
y) and (y′, s′ mod Tn

y′ ) in Ĝ0, it is easy to construct an f ∈ Cc(G0) such that (F f )(y, s mod Tn
y) 6=

(F f )(y′, s′ mod Tn
y′ ).



648 F. Cadet / Journal of Geometry and Physics 57 (2007) 641–656

Proof. For every groupoid G with space of units G(0), and for any subset U of G(0), the set r−1(U ) ∩ s−1(U ) is a
subgroupoid of G, called the restriction of G to U , denoted as G|U , whose space of units is U .

For every closed subgroup H of Tn , T̂n/H is a subgroup of Zn , and hence (R × N ) o T̂n/H is a subgroupoid of
G̃. We let

∆H = {y ∈ ∆ | Tn
y = H}.

Then, we get a partition ∆ =
⋃

H ∆H and we can form the restriction
(
(R × N ) o T̂n/H

)∣∣∣
R×∆H

. Since, for every

k ∈ Zn , we have the partition

∆(k) =

⋃
H s.t. k∈T̂n/H

∆H ,

it is easy to verify that G is the disjoint union G =
⋃

H

(
(R × N ) o T̂n/H

)∣∣∣
R×∆H

, and hence a subgroupoid of G̃.

A locally compact, Hausdorff, separable groupoid with open source and open range is étale if and only if it admits
a covering by open bisections. Hence a subgroupoid G of an étale groupoid G̃ is itself étale if and only if G(0) is
locally closed in G̃(0), and the images by the source map s (or by the range r ) of open bisections covering G are open
in G(0). In our case, the Gk are bisections covering G.

The bundle map G
p-- R is open since the first projection R × ∆

pr1-- R is open, s is open, and p = pr1 ◦ s.
The amenability of G comes from standard facts for groupoids (cf. [1]). �

The main result of the section is

Theorem 2.2. Let M be a Hausdorff, separable manifold with a continuous action of Tn such that the quotient space
∆ is a locally closed part of a Hausdorff manifold N endowed with a smooth action β of Rn . If

1. the groupoid G is étale, amenable and the bundle map G -- R is open (cf. Proposition 2.1),

2. the projection M
J- N is smooth and has a continuous section σ such that, for every k ∈ Zn , the functions

Mk
kσ- T are smooth,

then M admits a Poisson bracket {., .}Ω such that G is a deformation groupoid of (M,Ω).

This result is similar to that of Rieffel [21,22] but requires quite different technical conditions.
The proof of Theorem 2.2 consists in applying Proposition 0.5. Theorem 1.3 shows that condition 1 of

Proposition 0.5 holds. In order to show that condition 2 holds, we define for any locally closed subset Y of a manifold
Ỹ the space C∞

c (Y ⊂ Ỹ ) of continuous compactly supported functions f ∈ Cc(Y ) which admit a smooth extension
f̃ ∈ C∞(Ỹ ). We have the following lemmas.

Lemma 2.3. Under the assumptions of the Theorem 2.2, Q = C∞
c (G ⊂ G̃) is a dense sub-*-algebra of C∗(G).

Proof. The space C∞
c (G ⊂ G̃) is clearly a linear subspace of Cc(G), and is stable by involution, since, for any f with

extension f̃ ∈ C∞(G̃), the map f ∗ has an extension g - f̃ (g−1) which is smooth, since the inverse map of G̃ is
a diffeomorphism.

Since the open bisections Gk = G ∩ (R × N × {k}) form a partition of G for k ∈ Zn , we obtain

C∞
c (G ⊂ G̃) =

⊕
k∈Zn

C∞
c (Gk ⊂ R × N × {k}).

Then, to prove the stability of C∞
c (G ⊂ G̃) by product, one has only to show that, for every l, m ∈ Zn and every

f ∈ C∞
c (Gk ⊂ R × N × {l}) and f ′

∈ C∞
c (Gl ⊂ R × N × {m}), we have f ∗ f ′

∈ C∞
c (G ⊂ G̃). This follows easily

from the formula

( f ∗ f ′)(h̄, y, k) =

{
f (h̄, βh̄l(y), l) f ′(h̄, y, m) if k = l + m
0 otherwise.

Since Cc(G) is dense in C∗(G), then C∞
c (G ⊂ G̃) is dense in C∗(G) if every f ∈ Cc(G) can be approximated

uniformly by functions fn ∈ C∞
c (G ⊂ G̃), since the topology induced by C∗(G) on Cc(G) is the sup-norm
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topology. To prove such an approximation, we note that, since G is locally closed in G̃, a function fn ∈ Cc(G)

is in C∞
c (G ⊂ G̃) if and only if it admits a smooth and compactly supported extension f̃n ∈ C∞

c (G̃). Any f ∈ Cc(G)

is compactly supported, so it admits a continuous extension f̃ on G̃ such that Supp f̃ ∩ G is compact. This extension
f̃ can be uniformly approximated by f̃n ∈ C∞

c (G̃), and using a smooth partition of unity, we can suppose that

Supp f̃n ⊂ Supp f̃ . Then, the restriction of f̃n to G, fn = f̃n
∣∣
G , is continuous and its support is included in

Supp f̃ ∩ G; hence it is compact. We have fn ∈ C∞
c (G ⊂ G̃) and

sup
G

| f − fn| ≤ sup
G̃

∣∣ f̃ − f̃n
∣∣

n→∞

- 0.

So C∞
c (G ⊂ G̃) is dense in C∗(G) by the above characterization. �

As a corollary, Q0 = C∞
c (G0 ⊂ G̃0) is dense in C∗(G0) (condition 2(a)). And from the formula

(I−1 f0)(x) =

∑
k∈ ̂Tn/Tn

J (x)

f0(J (x), k)kσ (x),

of Theorem 1.3 and the assumptions that J and the kσ are smooth, we get I−1Q0 ⊂ C∞

0 (M) (condition 2(b)).
Condition 2(c

′

) (and thus Theorem 2.2) follows from the next lemma.

Lemma 2.4. Under the assumptions of Theorem 2.2, for every f, f ′
∈ C∞

c (G ⊂ G̃) and every ẽ ∈ C∞
c (G̃) which

extends f ∗ f ′
− f ′

∗ f on G̃ (resp. on a neighborhood in G̃ of a given point of G0), the restriction d = d̃
∣∣∣
G

of

d̃ ∈ C∞(G̃) defined by

d̃(h̄, y, k) =
1
ı

∫ 1

0

∂ ẽ

∂ h̄
(h̄t, y, k) dt

verifies the following.

1. d is a continuous extension of the section h̄ - 1
ı h̄ [ fh̄, f ′

h̄] on G (resp. on a neighborhood in G of the point of
G0 considered);

2. d has the same support as f ∗ f ′
− f ′

∗ f , and thus is compactly supported;
3. the value of d on G0 (resp. at the point of G0 considered) only depends on f0 and f ′

0, and is given by

{ f0, f ′

0}0(0, y, k) =
1
ı

∂ ẽ

∂ h̄
(0, y, k).

Proof. 1. The 0-order Taylor integral formula gives

ẽ(h̄, y, k) = ẽ(0, y, k) + ı h̄d̃(h̄, y, k).

For every (h̄, y, k) in G (resp. in the neighbourhood of G0 considered), since (0, y, h̄) is in G0, and since C∗(G0)

is commutative, we have

ẽ(0, y, k) = ( f ∗ f ′
− f ′

∗ f )(0, y, k) = 0.

Hence, we obtain on G

f ∗ f ′
− f ′

∗ f = ı h̄d,

i.e. d is a continuous extension of f ∗ f ′
− f ′

∗ f
ı h̄ .

2. Since the bundle map G -- R is open, the set G − G0 is dense in G; hence the continuous extension d is
unique, and the previous relation f ∗ f ′

− f ′
∗ f = ı h̄d shows that f ∗ f ′

− f ′
∗ f and d have the same support.

3. Since the map ( f, f ′) - f ∗ f ′
− f ′

∗ f is bilinear, so is ( f, f ′) - d|G0
. Then, it is sufficient to prove that

f0 = 0 implies d|G0
= 0. In the same way as for ẽ (we had ẽ|G0

= 0) we get

∃δ f ∈ C∞
c (G ⊂ G̃), f = ı h̄δ f.

Then, f ∗ f ′
− f ′

∗ f
ı h̄ = δ f ∗ f ′

− f ′
∗ δ f ; this can be continuously extended by 0 at h̄ = 0. �
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3. Computation of the Poisson bracket

Adding to the hypothesis of Theorem 2.2 the assumption that the action α is smooth and some other technical
assumptions, one can compute explicitly the Poisson structure Ω on M such that G is a deformation groupoid of
(M,Ω). We introduce some notation and conventions. We identify Rn with its Lie algebra Lie(Rn). We fix a basis
E1, . . . , En of Rn , and we identify Rn with Lie(Tn), the Lie algebra of Tn , and with its linear dual Lie(Tn)∗;
in particular Zn

= T̂n is viewed as a lattice in Rn , and denoting by (. | .) the duality bracket of Rn , and by

Lie(Tn)
exp- Tn the exponential map, we get for every k = (k1, . . . , kn) ∈ Zn(

Ei | E j
)

= δi, j , (k | Ei ) = ki , 〈k, exp X〉 = eı(k|X).

The vector field on M (resp. N ) of the infinitesimal action of α (resp. β) in the direction X ∈ Rn will be denoted by
ξα

X (resp. ξ
β
X ), i.e. :

∀x ∈ M, ξα
X (x) =

d
dh̄

αexp(h̄ X) (x)

∣∣∣∣
h̄=0

, and ∀y ∈ N , ξ
β
X (y) =

d
dh̄

βh̄ X (y)

∣∣∣∣
h̄=0

.

We denote by E∗

1 , . . . , E∗
n the functions on G0 defined by

E∗

i (0, y, k) = (k|Ei ).

The first step is:

Proposition 3.1. Under the assumptions of Theorem 2.2, let Ω be the Poisson bivector on M such that G is a
deformation groupoid of (M,Ω). For any f, f ′

∈ C∞
c (G ⊂ G̃), and any extension f̃ , f̃ ′

∈ C∞
c (G̃) of f and

f ′, we define f0 = f |G0
and f ′

0 = f ′
∣∣
G0

. If I is the isomorphism constructed in Theorem 1.3, we have

{I−1 f0, I−1 f ′

0}Ω =
1
ı

n∑
i=1

I−1
[

d f̃
(
ξ

β
Ei

)∣∣∣
G0

] [
I−1(E∗

i f ′

0)
]

−

[
I−1(E∗

i f0)
]
I−1

[
d f̃ ′

(
ξ

β
Ei

)∣∣∣
G0

]
.

Proof. Since the Poisson bracket {., .}Ω on M is given by the relation

I−1
{ f0, f ′

0}0 = {I−1 f0, I−1 f ′

0}Ω ,

we have only to prove that

{ f0, f ′

0}0 =
1
ı

n∑
i=1

d f̃
(
ξ

β
Ei

)∣∣∣
G0

∗ (E∗

i f ′

0) − (E∗

i f0) ∗ d f̃ ′

(
ξ

β
Ei

)∣∣∣
G0

.

We can restrict to functions f, f ′ with extensions f̃ , f̃ ′ both supported in R × N × {l} and R × N × {m}, for some
l, m ∈ Zn . Then, f ∗ f ′ and f ′

∗ f are both supported in R × N × {m + l}.
Since we assumed that G is étale, every element in G0 ∩ (R × N × {m + l}) has a neighborhood V in G such that,

for every (h̄, y, m + l) in V , the elements

(h̄, y, l), (h̄, βh̄l(y), m), (h̄, y, m), (h̄, βh̄m(y), l)

are all in G. On V , we get

f ∗ f ′
− f ′

∗ f = ẽ,

where ẽ ∈ C∞(G̃) is the function defined by

ẽ(h̄, y, m + l) = f̃ (h̄, βh̄l(y), m) f̃ ′(h̄, y, l) − f̃ ′(h̄, βh̄m(y), l) f̃ (h̄, y, m).

From Lemma 2.4, we get

{ f0, f ′

0}0(0, y, k) =
1
ı

∂ ẽ

∂ h̄
(0, y, k).
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We compute

∂ ẽ

∂ h̄
(h̄, y, k) =

(
∂ f̃

∂ h̄
(h̄, βh̄l(y), m) + d f̃

(
dβh̄l

dh̄
(y)

)
(h̄, βh̄l(y), m)

)
f̃ ′(h̄, y, l)

+ f̃ (h̄, βh̄l(y), m)
∂ f̃ ′

∂ h̄
(h̄, y, l) − f̃ ′(h̄, βh̄m(y), l)

∂ f̃

∂ h̄
(h̄, y, m)

−

(
∂ f̃ ′

∂ h̄
(h̄, βh̄m(y), l) + d f̃ ′

(
dβh̄m

dh̄
(y)

)
(h̄, βh̄m(y), l)

)
f̃ (h̄, y, m).

For h̄ = 0, since β0(y) = y, we obtain

∂ ẽ

∂ h̄
(0, y, k) = d f̃ (ξ

β
l )(0, y, m) f̃ ′(0, y, l) − d f̃ ′(ξβ

m)(0, y, l) f̃ (0, y, m).

Since ξ
β
l =

∑n
i=1 (l | Ei ) ξ

β
Ei

we get then

{ f0, f ′

0}0(0, y, k) =
1
ı

n∑
i=1

d f̃ (ξ
β
Ei

)(0, y, m)E∗

i (0, y, l) f̃ ′(0, y, l) − d f̃ ′(ξ
β
Ei

)(0, y, l)E∗

i (0, y, m) f̃ (0, y, m),

i.e.

{ f0, f ′

0}0 =
1
ı

n∑
i=1

d f̃
(
ξ

β
Ei

)∣∣∣
G0

∗ (E∗

i f ′

0) − (E∗

i f0) ∗ d f̃ ′

(
ξ

β
Ei

)∣∣∣
G0

. �

The second step is to compute I−1 d f̃
(
ξ

β
Ei

)∣∣∣
G0

and I−1(E∗

i f0) with respect to I−1 f0. We use some additional

conditions to obtain:

Theorem 3.2. Assume the hypothesis of Theorem 2.2, along with the following:

1. the action α of Tn on M is smooth;
2. the set ∆(∞) = {y ∈ ∆ | Tn

y = {1}} is open in N and dense in ∆3;

3. the restricted map ∆(∞) × Tn ρ- M∞ (cf. Lemma 1.4) is a diffeomorphism.

Then, the Poisson structure of Theorem 2.2 is given on M∞ by the bivector

Ω =

n∑
i=1

ξα
Ei

∧ ρ∗(ξ
β
Ei

).

Proof. Remark that, for Q = C∞
c (G ⊂ G̃), we have both

Q0 = C∞
c (G0 ⊂ G̃0) and I−1Q0 ⊂ C∞

0 (M),

and hence I−1Q0 is dense in C∞

0 (M) since C∞
c (G0 ⊂ G̃0) is dense in C∗(G0). So we have only to prove that, for

every f0, f ′

0 ∈ C∞
c (G0 ⊂ G̃0),

{I−1 f0, I−1 f ′

0}Ω =

〈
d(I−1 f0) ⊗ d(I−1 f ′

0)

∣∣∣∣∣ n∑
i=1

ξα
Ei

∧ ρ∗(ξ
β
Ei

)

〉
,

i.e.

{I−1 f0, I−1 f ′

0}Ω =

n∑
i=1

d
(
I−1 f0

) (
ξα

Ei

)
d
(
I−1 f ′

0

) (
ρ∗

(
ξ

β
Ei

))
− d

(
I−1 f ′

0

) (
ξα

Ei

)
d
(
I−1 f0

) (
ρ∗

(
ξ

β
Ei

))
. (1)

3 The density occurs for example when the action α is effective.
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Moreover, it is enough to prove formula (1) on M∞ = J−1(∆(∞)), since it is dense in M . Formula (1) is a
consequence of Proposition 3.1 and both formulas

I−1(E∗

i f0) =
1
ı

d(I−1 f0)(ξ
α
Ei

) (2)

I−1 d f̃
(
ξ

β
Ei

)∣∣∣
G0

= d
(
I−1 f0

)
(ρ∗(ξ

β
Ei

)). (3)

Let us prove formula (2). Recall from Theorem 1.3 that, for all x ∈ M ,

I−1( f0)(x) =

∑
k∈Zn

f (0, J (x), k)kσ (x).

We have, for all x ∈ M ,

dkσ (ξα
Ei

)(x) =
d
dt

kσ

(
αexp(t Ei ) (x)

)∣∣∣∣
t=0

=
d
dt

〈k, exp(t Ei )〉

∣∣∣∣
t=0

kσ (x) = ı (k | Ei ) kσ (x),

and since J is invariant with respect to the action α, for all x ∈ M , we get

dx (I−1 f0)(ξ
α
Ei

) =

∑
k∈Zn

f (0, J (x), k)dkσ (ξα
Ei

)(x)

= ı
∑
k∈Zn

f (0, J (x), k)E∗

i (0, J (x), k)kσ (x)

= ıI−1(E∗

i f0)(x).

For formula (3), since ξ
β
Ei

is a vector field on ∆(∞), using conditions 2 and 3 and the definition of I, we get, for all
s ∈ Tn and y ∈ ∆(∞),

dρ(s,y)

(
I−1 f0

)
(ρ∗(ξ

β
Ei

)) = d(s,y)

(
I−1 f0 ◦ ρ

)
(ξ

β
Ei

)

=

∑
k∈Zn

dy f̃ (ξ
β
Ei

) 〈k, s〉

=

((
I−1 d f̃ (ξ

β
Ei

)

∣∣∣
G0

)
◦ ρ

)
(s, y)

and hence d
(
I−1 f0

)
(ρ∗(ξ

β
Ei

)) = I−1
(

d f̃ (ξ
β
Ei

)

∣∣∣
G0

)
. �

4. Application to toric manifolds

First we recall some facts concerning toric manifolds. We will use the notations and conventions of Sections 1 and
3.

Definition 4.1. The smooth action α of a Lie group G on a symplectic manifold (M, ω) is Hamiltonian when there

exists a so-called moment map M
J- Lie(G)∗ such that

∀f ∈ C∞(M), ∀X ∈ Lie(G), df
(
ξα

X

)
= {(J | X) , f}ω.

When M is connected, J is unique up to a constant.
A toric manifold is a compact and connected symplectic manifold (M, ω) endowed with an effective Hamiltonian

action α of Tn such that M has (real) dimension 2n.

In the 1980’s Atiyah [2], and Guillemin and Sternberg [12] proved that, for a toric manifold, the image of the
moment map J (M) is a convex polytope in Rn

= Lie(Tn)∗. And Delzant [9] completed this result with the following:

• the map J is Tn-invariant and the quotient map is a bijection M/Tn
' J (M), and hence an homeomorphism. From

now on, we identify ∆ = M/Tn with the polytope J (M) in N = Rn .
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• Every isotropy group Tn
y is connected and depends only on the open face of the polytope ∆ containing y; more

precisely there exists a parametrization of ∆ such that

∆ = {y ∈ Rn
| ∀ j ∈ {1, . . . , n0}, (y | X j ) ≥ λ j }, X j ∈ Zn, λ j ∈ R

and for which

Lie(Tn
y) = span{X j | (y | X j ) = λ j }.

In particular ∆(∞) is the topological interior of ∆ in Rn .
• Two toric manifolds having the same polytope ∆ are diffeomorphic, in a Tn-equivariant symplectic way. Thus, a

toric manifold is totally characterized by its polytope.
• When ∆ is the polytope of a toric manifold M , there is an explicit construction of M (with action and symplectic

form ω) from ∆.

We need to recall briefly the main steps of the latter construction; we use the parametrization of ∆ described above.

1. Tn0 has a (diagonal) Hamiltonian action on Cn0 endowed with its canonical symplectic structure ω0 =
∑n0

j=1 dx j ∧

dy j . The moment map is given by

J0(z1, . . . , zn0) = (λ1, . . . , λn0) +
1
2

(
|z1|

2, . . . , |zn0 |
2
)

∈ Rn0 .

2. There exists an exact sequence of groups

1 - Td ⊂
i- Tn0 π-- Tn -- 1, (n0 = n + d)

such that dπ(F j ) = X j , where F1, . . . , Fn0 is the canonical basis of Rn0 .

3. Using Lie(Tp)∗ = Rp, let Rn0
di∗- Rd be the cotangent map of i , and let us define Jd = di∗ ◦ J0. Then, we

have an inclusion map J−1
d {0} ⊂

j- Cn0 and J−1
d {0} is a subset of Cn0 invariant for the actions of Tn0 and of

Td – identified with its image by i in Tn0 . Moreover, these two actions commute and we get a quotient action of
Tn

' Tn0/Td on J−1
d {0}/Td .

4. Using the Marsden–Weinstein symplectic reduction [15], the canonical projection J−1
d {0}

pr-- J−1
d {0}/Td

is a submersion, and hence J−1
d {0}/Td is a manifold of dimension 2n with symplectic structure ω such that

pr∗ω = j∗ω0. Moreover the action of Tn is Hamiltonian with moment map J . Calculations prove that the image
of J is ∆, so we get the following commutative diagram:

M 'J−1
d {0}/Td ��pr

J−1
d {0} ⊂

j - Cn0

--J

J
0
◦

j -

��

J0 -

Jd J0 ◦ j = dπ∗
◦ J ◦ pr

Rn ⊂

dπ∗
- Rn0

di∗
-- Rd di∗ ◦ dπ∗

= 0

The main result of this section is:

Theorem 4.2. Let (M, ω) be a toric manifold with the action α of Tn , let M
J- N = Rn be the moment map, and

let β be the action of Rn on N by translation:

βX (y) = y + X.

Then, the groupoid G constructed in Theorem 2.2 is a deformation groupoid of (M, ω).

We will simply prove that the conditions of Theorem 2.2 are fulfilled, and then use Theorem 3.2 to prove that the
Poisson structure Ω so obtained is the same as the one coming from ω, i.e. {., .}ω = {., .}Ω .

Condition 1 of Theorem 2.2 is fulfilled using Proposition 2.1 and the following lemma.

Lemma 4.3. Under the assumptions of Theorem 4.2, for every k ∈ Zn , the following set is open in ∆ × Rn:

s(Gk) = {(h̄, k) ∈ R × ∆ | y, y + h̄k ∈ ∆(k) and Tn
y = Tn

y+h̄k}.
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Proof. Recall that the isotropy subgroups Tn
y are connected, and that

Lie(Tn
y) = span{X j | (y | X j ) = λ j }.

So we obtain

∆(k) = {y ∈ ∆ | ∀ j ∈ {1, . . . , n0}, (y | X j ) = λ j ⇒ (k | X j ) = 0} = ∆ ∩ U (k),

where U (k) is the open subset of Rn defined by

U (k) = {y ∈ Rn
| ∀ j ∈ {1, . . . , n0}, (k | X j ) 6= 0 ⇒ (y | X j ) > λ j }.

Since we have(
y + h̄k | X j

)
=
(
y | X j

)
+ h̄

(
k | X j

)
,

Then, we get that

y ∈ ∆(k) ⇒ Lie(Tn
y) ⊂ Lie(Tn

y+h̄k).

In the same way, we get y + h̄k ∈ ∆(k) ⇒ Lie(Tn
y+h̄k) ⊂ Lie(Tn

y). Hence y, y + h̄k ∈ ∆(k) implies that Tn
y = Tn

y+h̄k
and we have furthermore

y, y + h̄k ∈ ∆(k) ⇔ y ∈ ∆(k) and y + h̄k ∈ U (k).

So

s(Gk) = {(h̄, k) ∈ R × ∆ | y ∈ ∆(k) and y + h̄k ∈ U (k)}

is open in R × ∆. �

Condition 2 of Theorem 2.2 is fulfilled using the two following lemmas. For the action of Tn0 in Cn0 we have
J0(Cn0) = λ + (R+)n0 = ∆0, and there is a natural section σ0 of J0 given, for every (w1, . . . , wn0) ∈ λ + (R+)n0 , by

σ0(w1, . . . , wn0) =

(√
2w1 − λ1, . . . ,

√
2wn0 − λn0

)
.

Lemma 4.4. For every toric manifold (M, ω) constructed as before, the map σ = pr ◦ σ0 ◦ dπ∗ is well defined and

is a section of M
J- ∆ ⊂ Rn .

Proof. Using the previous big commuting diagram and J0 ◦ σ0 = id, we get for every y ∈ ∆

Jd((σ0 ◦ dπ∗)(y)) = (di∗ ◦ dπ∗)(y) = 0,

and hence (σ0 ◦ dπ∗)(y) is in J−1
d {0}, so σ is well defined.

The same kind of calculation proves

dπ∗
◦ (J ◦ σ) = dπ∗.

Since π is surjective, dπ∗ is injective, and hence J ◦ σ = id. �

In particular, this section σ is continuous. Moreover, since the restriction of σ0 to ∆0(0) = λ + (R∗
+)n0 is smooth,

we get that σ is smooth on ∆(∞), and hence the map ∆(∞) × Tn ρ- M is smooth.

Lemma 4.5. For every toric manifold (M, ω) constructed as before and with respect to the previous σ , the map

Mk
kσ- T is smooth for all k ∈ Zn .

Proof. Considering the diagonal action of Tn0 on Cn0 with the section σ0, in the same way as in Section 1 for the
action α of Tn on M with the section σ , one can define:

• a map ∆0 × Tn0
ρ0- Cn0 ;

• the sets ∆0(l) and Cn0
l = ρ0(∆0(l) × Tn0), for every l = (l1, . . . , ln0) ∈ Zn0 ;

• the map Cn0
l

lσ0- T.
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Explicitly,

Cn0
l = {(z1, . . . , zn0) ∈ Cn0 | l j 6= 0 ⇒ z j 6= 0}

and, since σ0(J0(z1, . . . , zn0)) = (|z1|, . . . , |zn0 |), we have

lσ0(z1, . . . , zn0) =

∏
j |l j 6=0

(
z j

|z j |

)l j

,

and hence lσ0 is smooth on Cn0
l .

For k ∈ Zn , we apply this construction to the particular case l = dπ∗(k) ∈ Zn0 . Then, one can check that the
following diagram is commutative:

Mk ��pr
pr−1(Mk) ⊂

j - Cn0
l

-
kσ T

� lσ0 lσ0 ◦ j = kσ ◦ pr

Since pr is a submersion and lσ0 ◦ j is smooth, kσ is smooth too. �

So the conditions of Theorem 2.2 are satisfied. To use Theorem 3.2 it remains only to prove that the map

∆(∞) × Tn ρ- M∞ is a diffeomorphism; we already know that ρ is one-to-one and smooth. We obtain that
ρ is a diffeomorphism since it pulls back a nondegenerate 2-form onto a nondegenerate 2-form, as is established in
the following lemma.

Lemma 4.6. For any toric manifold (M, ω) constructed as before, and for any (y, s) ∈ ∆(∞) × Tn , identifying the
tangent bundle of ∆(∞) × Tn at (y, s) with Rn

× Rn , we get

∀(Y, X), (Y ′, X ′) ∈ Rn
× Rn, ρ∗ω((Y, X), (Y ′, X ′)) =

(
X | Y ′

)
−
(
Y | X ′

)
.

Proof. For any y ∈ ∆(∞) and s ∈ Tn , we get

dy,sρ(Y, X) = ξα
X (ρ(y, s)) + dσ(y)αs(dyσ(Y )).

So, using the relation between ω and J given by ω
(
ξα

X , T
)

= d (J | X) (T ), we get

ρ∗ω((0, X), (0, X ′)) = ω
(
ξα

X , ξα
X ′

)
= 0.

ρ∗ω((0, X), (Y, 0)) = ω
(
ξα

X , dαs(dσ(Y ))
)

= (X | Y ).

Then, since σ ∗

0 ω0 = 0, we get, using pr∗ω = j∗ω0, that

σ ∗ω = (pr ◦ σ0 ◦ dπ∗)∗ω = (σ0 ◦ dπ∗)∗(pr∗ω) = (dπ∗)∗(σ ∗

0 ω0) = 0.

Hence,

ρ∗ω((Y, 0), (Y ′, 0)) = (αs ◦ σ)∗ω((Y, 0), (Y ′, 0)) = σ ∗ω((Y, 0), (Y ′, 0)) = 0. �

Moreover, using the fact that ξ
β
Y = Y since β acts by translations, we get

dσ(y)αs
(
dyσ(Y )

)
= ρ∗

(
ξ

β
Y

)
.

Hence, it follows immediately that the Poisson bivector associated with ω is equal to the bivector Ω given in
Theorem 3.2. So Theorem 4.2 is proved.

Finally, let us add a result on the structure of the C∗-algebras C∗(G h̄) which occur in the deformation:

Proposition 4.7. For any h̄ ∈ R, every irreducible representation of C∗(G h̄) is finite dimensional. In particular
C∗(G h̄) is a C∗-algebra of type I.
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Proof. For h̄ = 0, C∗(G0) is commutative, and hence all representations have dimension 1.
For h̄ 6= 0, we note that the action of G h̄ on its base G(0)

h̄ has no isotropy, i.e. G h̄ is a so-called principal groupoid.
Moreover, every orbit of this action is finite, and hence closed. But every irreducible representation of the C∗-algebra
of a principal groupoid is supported by a closed orbit. �
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[21] M.A. Rieffel, Déformation quantization of Heisenberg manifolds, Comm. Math. Phys. 122 (1989) 531–562.
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